제보
히든스테이지
주요뉴스 산업

인공 광합성 촉매로 친환경·고효율 리튬공기전지 기술 개발

기사등록 : 2018-07-29 12:00

※ 뉴스 공유하기

URL 복사완료

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

[서울=뉴스핌] 김영섭 기자 = 국내 연구진이 광합성 반응을 본뜬 인공 광합성 기술을 차세대 전지 개발에 적용, 전기자동차 상용화에 성큼 다가선 것으로 기대된다.

29일 한국연구재단에 따르면 류원희 숙명여대 화공생명공학부 교수·류정기 울산과학기술원(UNIST) 에너지·화학공학부 교수 연구팀은 인공 광합성 촉매를 적용해 용량과 수명을 크게 향상시킨 리튬공기전지용 촉매 시스템을 개발했다.

(그림1) 자연광합성을 모사한 리튬공기전지용 고효율 촉매기술개발 모식도 : 자연광합성 시 식물 내에 존재하는 물산화반응 망간복합체를 모사한 폴리옥소메탈레이트를 이용하여 기존의 물분해 시스템뿐 아니라 차세대 전지인 리튬공기전지에 적용하여 효율을 높이는 데 성공하였다.

현재 상용되는 리튬이온전지로는 전기자동차의 주행거리가 200∼300 km에 그쳐 한 번 충전으로는 서울에서 부산까지 가기 어렵다. 반면 리튬공기전지는 리튬이온전지보다 에너지밀도가 2∼3배 높아 500km 이상 운행이 가능하다.

하지만 리튬공기전지는 구동할 때의 생성물로 인해 전지의 수명이 저하되는 한계가 있다. 리튬공기전지의 성능을 향상시키려면 고효율 촉매가 도입돼야 하다. 전기자동차의 대중화를 위해서는 촉매가 친환경적이고 저렴해야 한다.

이에 연구팀은 자연 광합성 반응을 본 뜬 인공 광합성 기술에서 사용되는 물 분해 촉매 물질을 리튬공기전지에 도입했다. 리튬공기전지 내부의 전해액에 폴리옥소메탈레이트(Polyoxometalate·POM)라는 촉매를 분산 처리함으로써 전기화학적인 반응을 촉진시키고 용량과 수명을 크게 향상시켰다.

또한 촉매인 폴리옥소메탈레이트는 형광등과 같은 생활의 빛에서 촉매 활성을 잃어버린다는 사실을 밝혀냈다. 이런 독특한 특성을 활용하면 빛으로 촉매 활성을 자유자재로 켜고 끄는 ‘광 스위치’로 발전시킬 수 있다.

(그림2) (좌) 리튬공기전지 전해액 이미지- 순수전해액, 촉매가 분산된 전해액, 형광등 노출 후 촉매가 용해된 전해액, (우) 촉매가 포함된 전해액의 리튬공기전지 성능 평가 : 폴리옥소메탈레이트(Polyoxometalate, POM)을 전해액에 넣을 경우 녹지 않고 균일 분산된 형태로 존재하지만 형광등에 노출된 후 보라색으로 완전 용해된 상태로 변한다. 형광등에 노출된 촉매는 활성을 잃어버리며 빛에 노출 유무에 따라 촉매의 활성유무를 제어하는 기술로 활용가능하다.

류원희 교수는 “기초화학과 에너지·환경공학이 결합한 이번 연구로 자연 광합성을 모사한 인공광합성 기술이 신개념 전지기술로 적용될 수 있는 교두보를 마련했다”며 “리튬공기전지 기반의 전기자동차 상용화에 도움을 줄 것으로 기대된다”고 연구 의의를 설명했다.

과학기술정보통신부·한국연구재단 기초연구사업의 지원을 받은 이번 연구결과는 국제전문학술지 ‘ACS 카탈리시스(ACS Catalysis)’ 6월25일자 최근호에 게재됐다. 

 

◆ 연구자들이 직접 전하는 연구이야기

 

류원희(왼쪽) 숙명여대 화공생명공학부 교수, 류정기(가운데) 울산과학기술원(UNIST) 에너지·화학공학부 교수, 이준서(오른쪽) 심성전자 반도체연구소 연구원 2018.07.29 [사진=한국연구재단]

- 연구를 시작한 계기나 배경은?

▲ 우리 공동연구팀은 자연모사 소재를 이차전지(류원희 교수 연구팀)와 광전기화학 시스템(류정기 교수 연구팀)에 적용하는 연구에 관심이 많았다. 서로의 연구에 대해 토론하던 중 자연광합성을 모사한 촉매인 ‘폴리옥소메탈레이트 소재가 물 분해 시스템 활성을 높이는 반응 기작이 리튬 공기 전지에서도 효과가 있을까?’ 하는 호기심에 연구를 시작했다. 우연히 시도한 초기 연구결과가 굉장히 흥미로워서 더 심도 있는 연구로 발전시키게 됐다.

 

- 연구 전개 과정에 대한 소개.

▲ 폴리옥소메탈레이트를 비수계 전해액을 사용하는 리튬 공기 전지에 적용한 연구는 거의 없었다. 그래서 기본적인 전기화학적 특성을 차근차근 밝혀내며, '제로(0) 베이스'에서 데이터를 쌓아가는 방식으로 연구를 진행했다. 다양한 용매에 대한 용매 선택성도 밝혀냈고, 빛의 조사에 따른 촉매활성 변화도 발견했다. 리튬 공기 전지의 성능을 높이는 것 이외에 자연광합성을 모사한 물 산화 촉매의 독특한 성질을 알아가는 것이 매우 흥미 있었다.

 

- 연구하면서 어려웠던 점이나 장애요소는 무엇인지? 어떻게 극복했는지?

▲ 기존의 리튬공기전지용 촉매 연구들은 촉매가 전해액에 완전히 녹은 상태를 사용했다. 그런데 폴리옥소메탈레이트를 전해액에 도포했을 때는 녹지 않고 분산된 상태로 존재했다. 촉매가 완전히 용해돼야 한다는 고정관념과 달리, 오히려 균일하게 분산된 상태에서 가장 좋은 촉매 활성을 발견했다. 예상과 다른 연구결과를 마주했을 때 부정적 해석보다 역 발상이 빛을 발했다.

 

- 이번 성과, 무엇이 다른가?

▲ 이 연구에서는 자연광합성 모사 기술을 리튬공기전지 촉매 기술에 응용했다. 서로 다른 두 가지 분야를 성공적으로 융합시킨 사례로, 다양한 자연모사 기술을 리튬공기전지에 활용할 수 있는 가능성을 열었다. 또한 기존 촉매들과 달리 특정 전해액에서 선택적으로 반응하는 것과, 형광등과 같은 생활 빛에 노출되면 촉매가 비활성화하는 것을 최초 보고했다. 이러한 선택적 촉매 활성을 발전시키면 자유자재로 촉매활성을 제어하는 스위치 타입의 촉매시스템을 개발할 수 있다.

 

- 실용화한다면 어떻게 활용될 수 있나?

▲ 전기자동차용 이차전지는 장거리 운행을 위해 높은 에너지밀도를 가져야 하며, 이론적으로 에너지 밀도가 가장 높은 리튬공기전지가 대안으로 꼽히고 있다. 이론적 수치에 훨씬 미치지 못하는 현재 전지성능을 이번 연구로 크게 개선시킬 수 있으며, 나아가 리튬공기전지의 실용화에 기여할 것이다.

 

- 꼭 이루고 싶은 목표나 후속 연구계획은?

▲ 폴리옥소메탈레이트 소재의 라이브러리를 구축하고 최적의 자연광합성 모사 촉매를 도출할 계획이다. 역으로 리튬공기전지 기술을 인공 광합성에 적용시키는 연구를 지속적으로 시도해 가며 기존 연구와는 다른 신개념의 차세대 전지 시스템을 개발해 내는 것이 목표이다.

 

kimys@newspim.com

<저작권자© 글로벌리더의 지름길 종합뉴스통신사 뉴스핌(Newspim), 무단 전재-재배포 금지>