제보
주요뉴스 대전·세종·충남

KAIST, 급속충전 하이브리드 리튬이온 전지 개발

기사등록 : 2020-12-03 13:00

※ 뉴스 공유하기

URL 복사완료

※ 본문 글자 크기 조정

  • 더 작게
  • 작게
  • 보통
  • 크게
  • 더 크게

[대전=뉴스핌] 김태진 기자 = KAIST는 신소재공학과 강정구 교수 연구팀이 급속충전이 가능한 고에너지·고출력 하이브리드 리튬이온 전지를 개발했다고 3일 밝혔다.

연구팀은 메조기공(2~50nm 크기의 구멍)과 마이크로 기공(2nm 이하 크기의 구멍)이 동시에 존재하는 다공성 구조의 전도성 탄소 구조체 기반의 고용량 음극재와 양극재 개발을 통해 고성능 하이브리드 리튬이온 전지를 구현했다.

연구팀이 개발한 하이브리드 리튬이온 전지는 이미 상용화된 리튬이온 배터리와 견줄만한 에너지 밀도와 슈퍼 축전기의 출력 밀도 특성을 모두 갖춘 차세대 에너지 저장 소자다. 수 초에서 수 분의 급속충전이 가능해 전기차를 비롯해 전기 트램과 스마트 전자기기 등에 활용이 기대된다.

전도성 탄소 구조체 기반의 고용량 음극과 양극 재료의 합성 과정[사진=카이스트] = 2020.12.02 memory4444444@newspim.com

리튬이온 배터리는 현재 대표적인 상업용 에너지 저장 시스템(ESS)이다. 미래 이동 수단으로 꼽히는 친환경 전기차(EVs)부터 각종 스마트 전자기기에 이르기까지 전자 산업에 필수적인 요소로 자리 잡고 있어 '제2의 반도체'로 불린다.

연구팀은 다공성 구조의 환원된 산화 그래핀을 활용한 전도성 탄소 기반의 음극 및 양극 소재를 개발하는 한편 속도 특성이 개선된 고용량 음극과 양극을 통해 고에너지·고출력의 하이브리드 리튬이온 에너지 저장 장치를 구현하는 데 성공했다.

연구팀은 우선 배터리용 음극 재료로 다공성 나노결정인 금속-유기 골격체( MOFs)의 탄화 과정을 통해 5~10 나노미터 크기의 몰리브덴 금속 산화물 (MoO2)이 결합된 탄소 구조체를 만들었다.

탄화과정에서 탄소 구조체를 감싸는 산화 그래핀은 환원되면서 전도성 탄소 결합 형성으로 전기 전도도를 향상시키며 선택적 금속 식각으로 마이크로 기공이 형성된 다공성 구조를 제작했다.

이 같은 마이크로 기공은 전해질 속 리튬이온(Li+)의 침투를 쉽게 하며 나노 크기의 금속 산화물과 환원된 산화 그래핀 껍질은 전기 전도도 향상을 통해 높은 용량과 고율 방전 특성을 보인다.

이와 함께 연구팀은 축전기용 양극 재료로 섬유형 전도성 고분자를 환원된 산화 그래핀 면에 가교화시켜 새로운 구조를 만드는 제작기술을 적용했다.

전도성 고분자인 폴리아닐린 (polyaniline, PANI)은 저온에서 순간적으로 중합돼 환원된 산화 그래핀 면에서 강한 결합력(π-π 결합)을 가지며, 질소 도핑 효과에 의해 음이온 (PF6-)의 흡착을 가능하게 한다.

전도성 폴리아닐린 고분자-환원된 산화 그래핀 양극은 환원된 산화 그래핀 대비 200% 증가한 이온 저장 용량과 함께 상용화된 활성탄 (activated carbon, AC)에 준하는 에너지 저장 특성을 보였다.

연구팀은 이러한 과정을 거쳐 새로 개발한 음극재(MoO2@rGO)와 양극재(PANI@rGO)를 활용해 고성능 하이브리드 전지를 개발했다.

이 하이브리드 전지는 기존 리튬이온 배터리 수준의 고에너지 밀도와 함께 넓은 구동 전압 범위에서 고출력 특성을 보인다.

태양전지 모듈로 수십 초 내 급속충전이 가능해 기존에 나와 있는 에너지 저장 시스템의 한계를 개선했다.

강정구 교수[사진=카이스트] 2020.12.02 memory4444444@newspim.com

연구를 주도한 강정구 교수는 "리튬이온 배터리 수준의 에너지 밀도는 물론 고출력 밀도에 의한 급속충전이 가능한 최첨단 리튬이온 전지ˮ라며, "활용 범위를 전기차를 포함해 모든 전자기기로까지 확대한다면 인류 삶의 질을 높일 것으로 기대한다ˮ고 말했다.

이번 연구는 과학기술정보통신부 글로벌프론티어사업의 하이브리드 인터페이스 기반 미래소재연구단과 미래창조과학부 수소에너지 혁신기술사업의 지원을 받아 수행됐다.

이번 연구결과는 재료 분야 국제 학술지 '어드밴스드 에너지 머터리얼(Advanced Energy Materials)'에 지난 11월 10일 실렸고 연구 우수성을 인정받아 표지논문으로 선정됐다.

memory4444444@newspim.com

<저작권자© 글로벌리더의 지름길 종합뉴스통신사 뉴스핌(Newspim), 무단 전재-재배포 금지>